Author Affiliations
Abstract
1 Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001,China
2 Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900,China
3 Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-University Bochum, Bochum, 44780, Germany
Anisotropy is one central influencing factor on achievable ultimate machined surface integrity of metallic materials. Specifically, grain boundary has a strong impact on the deformation behaviour of polycrystalline materials and correlated material removal at the microscale. In the present work, we perform molecular dynamics simulations and experiments to elucidate the underlying grain boundaryassociated mechanisms and their correlations with machining results of a bi-crystal Cu under nanocutting using a Berkovich tool. Specifically, crystallographic orientations of simulated bi-crystal Cu with a misorientation angle of 44.1° are derived from electron backscatter diffraction characterization of utilized polycrystalline copper specimen. Simulation results reveal that blocking of dislocation motion at grain boundaries, absorption of dislocations by grain boundaries and dislocation nucleation from grain boundaries are operating deformation modes in nanocutting of the bi-crystal Cu. Furthermore, heterogeneous grain boundary-associated mechanisms in neighbouring grains lead to strong anisotropic machining behaviour in the vicinity of the grain boundary. Simulated machined surface morphology and machining force evolution in the vicinity of grain boundary qualitatively agree well with experimental results. It is also found that the geometry of Berkovich tool has a strong impact on grain boundary-associated mechanisms and resultant ploughing-induced surface pile-up phenomenon.
nanocutting grain boundary tool geometry surface integrity molecular dynamics 
International Journal of Extreme Manufacturing
2019, 1(4): 045001
李欣 1,2,*王培源 2邹彤 2朱威 2[ ... ]郭唐永 2
作者单位
摘要
1 中国地震局 地球物理研究所, 北京 100081
2 中国地震局 地震研究所, 武汉 430071
3 中国科学院 测量与地球物理研究所, 武汉 430071
高重复频率激光器是kHz卫星激光测距系统的重要组成部分, 提高激光发射频率可以有效地获得更多的观测数据, 这是当今卫星激光测距领域的发展方向。针对武汉卫星观测站进行的kHz激光测距实验, 介绍了kHz激光器的工作过程和原理, 分析了影响高重复频率回波探测的因素。实验结果表明: 对实验过程中所观测到的中低轨卫星, 观测数据量提高了1~2个数量级, 观测精度也有所提高。
kHz激光测距 半导体激光器 卫星激光测距 高重复频率 后向散射 kHz laser ranging semiconductor laser satellite laser ranging high repetition rate backscattering 
强激光与粒子束
2011, 23(2): 367

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!